
TMO Progress Report 42-136 February 15, 1999

Trellis-Coded Quadrature-Phase-Shift Keying (QPSK)
With Variable Overlapped Raised-Cosine

Pulse Shaping
M. K. Simon,1 P. Arabshahi,1 and M. Srinivasan1

This article introduces the notion of uncoded, partially overlapped, staggered
quadrature raised-cosine modulation (SQORC-P) as well as that of a trellis-coded
form that is implemented as a specific embodiment of the recently introduced cross-
correlated trellis-coded quadrature modulation (XTCQM). Consideration is given to
the power spectral density (PSD) of the scheme over both linear and nonlinear chan-
nels as well as to its average bit-error probability (BEP) performance on an additive
white Gaussian noise (AWGN) channel, the latter being characterized in terms of
tight upper and lower bounds. It is shown that a continuously variable trade-off
(as a function of the fractional overlap parameter, 0 ≤ α ≤ 1) between the rate of
spectral roll-off and the amount of envelope fluctuation of the transmitted signal is
achievable with a receiver average BEP performance that is virtually independent of
the value of α and nominally equivalent to that of uncoded quadrature-phase-shift
keying (QPSK).

I. Introduction

Quadrature overlapped raised-cosine (QORC) and staggered QORC (SQORC) modulations were in-
troduced by Austin and Chang in 1981 [1] as schemes that offer a good combination of desirable spectral
properties and error-probability performance. These authors analytically described the spectral behav-
ior of these modulations on a linear additive white Gaussian noise (AWGN) channel and, in addition,
presented computer simulation results for the same behavior over nonlinear channels characteristic of a
traveling-wave tube (TWT) output. Specifically, it was shown that the power spectral density (PSD) of
QORC (or SQORC) is equal to the product of that corresponding to minimum-shift keying (MSK) and
that of quadrature-phase-shift keying (QPSK) or offset2 QPSK (OQPSK) with identical transmitted bit
rates. Thus, since the width of the main spectral lobe of MSK is 3/2 wider than that of QPSK, but its
side lobes fall off two orders of magnitude faster (OQPSK varies as f−2 and MSK varies as f−4), QORC
and SQORC combine the advantageous properties of MSK and QPSK by having a first spectral null at
f = 1/2Tb (Tb is the bit duration in seconds) and an asymptotic spectral roll-off that varies as f−6. Also,
the QORC or SQORC waveform can be implemented with a transmitter similar to the quadrature form

1 Communications Systems and Research Section.

2 The terms “offset” and “staggered” are used interchangeably in the literature to indicate a modulation in which the
in-phase (I) and quadrature-phase (Q) channels are delayed with respect to one another by one-half of a symbol interval.
For QPSK modulation, the term “offset” is more common whereas, for QORC, the term “staggered” appears more often.
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of modulator used to implement MSK, the difference being the shape of the transmitted pulse on the
in-phase (I) and quadrature-phase (Q) channels.

In subsequent years, these schemes were studied further [2–6] both analytically and via simulation
with regard to their spectral and error-probability performances over nonlinear band-limited channels.
In all cases, the word “overlap” in the title of the acronym used to describe these modulations implied a
100 percent overlap of the two adjacent symbols with the one of interest. As such, QORC and SQORC
are not constant-envelope modulations (unlike OQPSK, which is) and, in fact, their envelopes fluctuate
as much as 3 dB. Nevertheless, despite the large envelope fluctuation, because of the staggering associated
with SQORC, it was still shown in the previously cited references to be a desirable modulation on nonlinear
channels from the standpoint of reducing the spectral side-lobe regrowth after bandpass filtering. What
would be of interest would be a class of modulations that bridges the gap between OQPSK (constant
envelope but slow spectral roll-off) and SQORC (maximum of 3-dB envelope fluctuation and rapid spectral
roll-off), thereby allowing a continuous trade-off between these two conflicting properties.

By introducing the notion of partial overlap in the time domain (analogous to the notion of excess
bandwidth associated with Nyquist signaling in the frequency domain), we shall describe, using a single
fractional overlap parameter, α, a class of modulations referred to as uncoded, partially overlapped, stag-
gered quadrature raised-cosine (SQORC-P) modulation, which at one extreme (no overlap) corresponds
to OQPSK and at the other (full overlap) corresponds to SQORC. The parameter, α, therefore allows
the system designer to continuously trade off between sharpness of spectral roll-off and degree of enve-
lope fluctuation (which, as mentioned above, on a nonlinear channel is related to the amount of spectral
side-lobe regrowth after bandpass filtering). We shall show that this parameterized form of SQORC has
a PSD corresponding to the product of the PSD of OQPSK (with a channel—I or Q—rectangular symbol
duration of 2Tb) and the PSD of MSK (with a channel—I or Q—1/2-sinusoidal symbol duration of 2αTb).
Furthermore, the implementation of SQORC-P can be accomplished in the identical manner as that used
to implement conventional SQORC. In particular, the pulse shape for SQORC-P can be obtained by
passing a rectangular pulse of duration 2Tb through a filter with impulse response equal to that of an
MSK pulse of duration 2αTb.

Recently, a cross-correlated trellis-coded quadrature-modulation (XTCQM) scheme was introduced3

that focuses on achieving a higher level of spectral containment than that inherent in the bandwidth effi-
ciency of the traditional multilevel modulations, e.g., multiple phase-shift-keying (M -PSK) and quadra-
ture amplitude modulation (QAM), associated with conventional trellis-coded techniques. The emphasis
in XTCQM is on maintaining the quadrature identity of the transmitted signal, which is accomplished
by applying an M -ary modulation (using different pulse shapes to distinguish among the members of the
M -ary set) to each of the I and Q channels, the idea being to simplify the receiver structure (including
the various synchronization subsystems). One special case of XTCQM considered in Footnote 3 occurs
when there is no cross-correlation between the I and Q channels and either rectangular or purely sinu-
soidal waveshapes are used as the underlying transmitted waveforms on the I and Q channels in each
symbol interval. With a simple rate 1/2, two-state encoder applied to the input I and Q symbol streams
and an appropriate signal (waveshape)-mapping function applied to the encoder outputs, it was shown
that the combined I–Q transmitted signal looks like a conventional (fully overlapped) SQORC in that it
possesses the identical PSD but has the added advantage of increased power efficiency brought about by
the inclusion of the two encoders.

In this article, we show that merely by changing one of the two waveforms assigned to the signal-
mapping function, the same special case of XTCQM can be used to generate a transmitted waveform
that spectrally resembles SQORC-P but again has the added power efficiency relative to the equivalent
uncoded modulation. This class of modulations shall be referred to as trellis-coded OQPSK with variable

3 M. K. Simon and T.-Y. Yan, “Cross-Correlated Trellis-Coded Quadrature Modulation (XTCQM),” provisional patent
filed, CIT 2885, California Institute of Technology, Pasadena, California, October 5, 1998.
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overlapped raised-cosine pulse shaping. While our primary interest is indeed in the trellis-coded case as
per the above, we shall begin by first discussing the properties and means of generating an SQORC-P
signal. Next we consider the PSD of this signal when transmitted over linear and nonlinear (hard-limited)
channels. Following this, we shall present the optimum receiver for the trellis-coded case along with
upper and lower bounds on its bit-error probability (BEP). Since the PSD and BEP are both expressed
in terms of the overlap parameter, α, we shall be able to demonstrate the continuously variable trade-
off (as a function of α) between the corresponding performances of the two extremes corresponding to a
transmitted signal having rectangular pulse shaping (α = 0) and one having fully overlapped raised-cosine
pulse shaping (α = 1) typical of OQPSK and SQORC modulations, respectively.

II. The Transmitter Model for Uncoded SQORC-P

Consider a binary source generating a random data sequence {dn} at rate 1/Tb b/s. At the transmitter,
this data stream is split into even and odd data (symbol) sequences {an = d2n} and {bn = d2n+1} assigned
(arbitrarily) to the I and Q channels. As in all quadrature modulation schemes, each of these symbol
sequences occurs at a rate of 1/2Tb = 1/Ts, and the two are assumed to be synchronous with each other.
The I and Q sequences (with rectangular pulses implied) are passed through identical I and Q pulse-
shaping filters with impulse response

h (t) =
π

4αTb sin
( π

2α

) sin
(

πt

2αTb

)
, 0 ≤ t ≤ 2αTb (1)

The response of this pulse-shaping filter to a unit amplitude rectangular pulse of duration 2Tb s is a pulse
shape p (t) (of duration 4Tb) that has a raised-cosine roll-off at its edges, is flat in its middle, and has
dead zones (zero value) at its beginning and end, i.e., (for convenience of notation, we define the pulse
shape shifted to the left by 2Tb s so that it is symmetrical around t = 0—see Fig. 1)

p (t+ 2Tb) =


1, 0 ≤ |t| ≤ (1− α)Tb

cos2 π (|t| − (1− α)Tb)
4αTb

, (1− α)Tb ≤ |t| ≤ (1 + α)Tb

0, (1 + α)Tb ≤ |t| ≤ 2Tb

(2)

p (t  + 2Tb )

1

-2Tb 2Tb

(1 + a)Tb(1 - a)Tb-(1 - a)Tb-(1 + a)Tb

t

Fig. 1.  The pulse shape for SQORC-P.
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Thus, the result of passing the I and Q rectangular pulse data streams through the pulse-shaping filters
is two streams of partially overlapped raised-cosine pulses. Figure 2 is an illustration of the partially
overlapped data stream on the I channel for a typical data sequence and α = 0.5 as an example. The
partially overlapped I and Q data streams then are delayed with respect to one another by Tb s (as
is the case for staggered-modulation schemes), modulated onto quadrature carriers, and then summed,
producing the transmitted SQORC-P modulation

s(t) = A

∞∑
n=−∞

{anp (t− 2nTb) cosωct+ bnp (t− (2n+ 1)Tb) sinωct} (3)

where A is an amplitude scaling constant that is related to the average power, S, of s (t) by
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A =

√√√√ S

1− α

4

(4)

A transmitter for generating the signal of Eq. (3) is illustrated in Fig. 3.

An alternate architecture for generating an SQORC-P signal is given in Fig. 4. Here, once again, the
I and Q channel data streams, {an} and {bn}, at rate 1/2Tb, which were originally obtained by splitting
the data sequence {dn} at rate 1/Tb into its even and odd indices, now are each split once again into
even and odd index subsequences (delayed by 2Tb with respect to each other) and occurring at rate
1/4Tb. These subsequences then are applied to partially overlapped raised-cosine pulses of duration 4Tb
[as typified by Eq. (2)] and summed back into a single data stream. Pulse-shape filtering here is thus
effectively performed through a process of splitting, multiplication by p (t), and recombining.

III. The PSD of SQORC-P Transmitted Over a Linear Channel

Since p (t) is produced by the convolution of a rectangular 2Tb s pulse with the impulse response of
Eq. (1), then the equivalent normalized (by 2Tb) low-pass PSD of SQORC-P is easily seen to be (for
simplicity, we have normalized A equal to unity)

Sm (f)
2Tb

=
∣∣∣∣ sin 2πfTb

2πfTb

∣∣∣∣2 ∣∣∣∣ cos 2παfTb
1− 16α2f2T 2

b

∣∣∣∣2 (5)

1

2Tb

p (t  ) CORRESPONDING TO EQ. (2)

4Tb
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t
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t
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Fig. 3.  Generating SQORC-P modulation via filtering.
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Fig. 4.  An alternative architecture for generating SQORC-P modulation using multipliers.

DELAY
Tb

where the first factor represents the PSD of OQPSK (with rectangular pulse shapes of duration 2Tb s)
and the second factor represents the PSD of the I–Q form of MSK (with a half-sinusoidal pulse shape of
duration 2αTb s). Note that, theoretically, for any α 6= 0, the PSD of Eq. (4) rolls off asymptotically as
f−6, although the rate at which the PSD reaches this asymptote clearly increases as α increases. Figure 5
is an illustration of the PSD of Eq. (4) with α as a parameter varying from zero to one. We observe from
this figure the corresponding gradual transition from the PSD of OQPSK to the PSD of SQORC.

IV. The PSD of SQORC-P Transmitted Over a Nonlinear Channel

Following steps analogous to those taken in [3] to determine the PSD of conventional SQORC over a
nonlinear channel modeled as a hard limiter, e.g., at the output of a TWT operating in saturation, it can
be shown that [3, Eq. (45)] also is applicable to SQORC-P provided that the appropriate pulse shapes
are used to characterize the various terms in that expression. In particular, we have
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=
3
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k +

1
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k=1

I2
k

+
1
4

( 4∑
k=1

Rk

)2

+

(
4∑
k=1

Ik

)2
 cos 8πfTb −

1
2

(
4∑
k=1

Rk

)(
4∑
k=1

Ik

)
sin 8πfTb

+ (R1 +R2 −R3 −R4)

(
4∑
k=1

Rk cos 4πfTb −
4∑
k=1

Ik sin 4πfTb

)

−R1R3 −R2R4 + I1I3 + I2I4 (6)

where Rk
4= Re {Yk} , Ik 4= Im {Yk}, and the Yk’s are given as follows.

For 0 ≤ α ≤ 1,

Y1 =
1

2
√

2

[(
sin 2πfTb

2πfTb

)
− j

(
sin2 πfTb
πfTb

)]
(7)
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Y2 =
1
2π

∫ απ

0

cos 2fTbz√
1 + sin2

( z

2α

)dz+ 1
2
√

2

[(
sin 2πfTb

2πfTb

)
− α

(
sin 2παfTb

2παfTb

)]

− j

 1
2π

∫ απ

0

sin 2fTbz√
1 + sin2

( z

2α

)dz − 1
2
√

2

[(
cos 2πfTb

2πfTb

)
− α

(
cos 2παfTb

2παfTb

)] (8)

Y3 = − (1− α)
2
√

2

(
sin 2π (1− α) fTb

2π (1− α) fTb

)
+

1
2π

∫ π

(1−α)π

sin
(
z − π
2α

)
cos 2fTbz√

1 + sin2

(
z − π
2α

) dz

− j

 (1− α)
2
√

2

(
cos 2π (1− α) fTb − 1

2π (1− α) fTb

)
+

1
2π

∫ π

(1−α)π

sin
(
z − π
2α

)
sin 2fTbz√

1 + sin2

(
z − π
2α

) dz

 (9)

For 0 ≤ α ≤ 0.5,

Y4 = − 1
2π

∫ απ

0

cos 2fTbz√
1 + sin2

( z

2α

)dz− 1
2
√

2

[
(1− α)

(
sin 2π (1− α) fTb

2π (1− α) fTb

)
− α

(
sin 2παfTb

2παfTb

)]

+
1
2π

∫ π

(1−α)π

sin
(
z − π
2α

)
cos 2fTbz√

1 + sin2

(
z − π
2α

) dz

+ j

 1
2π

∫ απ

0

sin 2fTbz√
1 + sin2

( z

2α

)dz− 1
2
√

2

[
(1− α)

(
cos 2π (1− α) fTb

2π (1− α) fTb

)
− α

(
cos 2παfTb

2παfTb

)]

− 1
2π

∫ π

(1−α)π

sin
(
z − π
2α

)
sin 2fTbz√

1 + sin2

(
z − π
2α

) dz

 (10a)

whereas for 0.5 ≤ α ≤ 1,

8



Y4 = − 1
2π

∫ (1−α)π
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0

sin 2fTbz√
1 + sin2

( z

2α

)dz − 1
2π

∫ απ

(1−α)π

sin
(
z − π
2α

)
sin 2fTbz√

sin2
( z

2α

)
+ sin2

(
z − π
2α

)dz

− 1
2π

∫ π

απ

sin
(
z − π
2α

)
sin 2fTbz√

1 + sin2

(
z − π
2α

) dz

 (10b)

Evaluating Eqs. (7), (8), (9), and (10b) at α = 1 gives results identical to [3, Eq. 45)], corresponding to
conventional SQORC. Also, at α = 0.5, Eqs. (10a) and (10b) produce the identical result, as should be
the case. Figure 6 is a plot of the PSD of Eq. (6) with overlap parameter α as a parameter. Simulation
results for the fully overlapped case (α = 1) also are indicated for analytical evaluations.

V. The Transmitter Model for Trellis-Coded OQPSK With Partially Overlapped
Raised-Cosine Pulse Shaping

In the citation in Footnote 3, a new class of trellis-coded modulations called cross-correlated trellis-
coded quadrature modulation (XTCQM) was introduced that combines the bandwidth efficiency of con-
ventional modulation schemes with the power efficiency of error-correction coding, but in a way that
maintains the desirable I–Q form of the transmitted signal. Although the generic form of this modulation
allows for cross-correlation of the bits generated by the I and Q encoders, i.e., some of the I-encoded bits
are used to define the Q-channel waveform and vice versa, specific embodiments also were considered
that did not involve such cross-correlation. One of these embodiments with I and Q encoder outputs
decoupled implements a signal with spectral properties identical to SQORC but that, from a detection
viewpoint, has the properties of trellis-coded OQPSK with fully overlapped raised-cosine pulse shaping.
A modulator representing this particular embodiment of XTCQM is illustrated in Fig. 7. Here, the I and
Q data sequences, {an} and {bn}, respectively, once again are assumed to be time synchronous, each
bit occurring during the interval (2n− 1)Tb ≤ t ≤ (2n+ 1)Tb.4 Letting {a′n} and {b′n} denote the (0,1)
equivalents of the I and Q data sequences, i.e.,

4 Since the choice for the specific time interval occupied by a single bit on the I or Q channel is arbitrary (provided that
it is Ts = 2Tb in duration), in this section we make this choice consistent with the notation introduced in the citation in
Footnote 3.
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a′n
4=

1− an
2

b′n
4=

1− bn
2

 (11)

then encoding these sequences into the I and Q pairs, I0, I1 and Q0, Q1, in accordance with (see Fig. 7)

I0 = a′n ⊕ a′n−1, I1 = a′n

Q0 = b′n ⊕ b′n−1, Q1 = b′n

 (12)

and inputting these pairs to a binary-coded decimal (BCD) signal mapper that selects the pair of indices

i = I0 × 20 + I1 × 21

j = Q0 × 20 +Q1 × 21

 (13)

the transmitted I and Q waveforms are chosen as

sI (t) = ci (t)

sQ (t) = cj (t)

 (14)

where the set ck (t) ; k = 0, 1, 2, 3 is defined by

c0 (t) = 1, −Tb ≤ t ≤ Tb

c1 (t) = sin
(
πt

2Tb

)
, −Tb ≤ t ≤ Tb

c2 (t) = − c0 (t)

c3 (t) = − c1 (t)


(15)

That is, for each input pair of data bits an and bn, a pair of indices i and j are selected that designate
two of the four possible waveforms in Eq. (15) for transmission as the I and Q signals.

It is a simple matter to modify the XTCQM transmitter embodiment of Fig. 7 so that it generates a
waveform whose spectral properties coincide with SQORC-P and whose detection has the characteristics
of trellis-coded OQPSK with partially overlapped raised-cosine pulse shaping. In particular, it is straight-
forward to show that this can be accomplished by simply redefining c1 (t) [and, therefore, its negative,
c3 (t) = −c1 (t)] as
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c1 (t) =


sin
(

πt

2αTb

)
, 0 ≤ |t| ≤ αTb

1, αTb ≤ |t| ≤ Tb
(16)

That is, the form of the transmitter in Fig. 7 is still appropriate with merely a change in the signal set
(two of the four) from which the I and Q signals are selected. Clearly in the limit of α = 1, c1 (t) of
Eq. (16) reduces to its definition in Eq. (15), whereas in the limit of α = 0, c1 (t) of Eq. (16) becomes

c1 (t) = sgn t, −Tb ≤ t ≤ Tb (17)

which produces a transmitted waveform with the spectral properties of OQPSK and the detection char-
acteristics of trellis-coded OQPSK (with the usual rectangular pulse shaping). Figure 8 illustrates the
two unique waveforms, c0 (t) of Eq. (15) and c1 (t) of Eq. (16), for α = 0.25, 0.5, 0.75, and 1.0, the latter
corresponding to c1 (t) of Eq. (15).

The I or Q channel of the transmitted modulation described above has a two-state trellis diagram,
which is illustrated in Fig. 9. The dashed line indicates a transition caused by an input “0” to the shift
register/XOR gate, and the solid line indicates a transition caused by an input “1.” The branches are
labeled with the output signal waveform (sI (t) or sQ (t) as appropriate) that results from the transition
following the symbol mapping. The optimum receiver for such a trellis diagram and its performance will
be discussed in the next section.
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Fig. 8. Trellis-coded OQPSK with raised-cosine pulse-shaping full-symbol wave-
forms (Ts =  2 Tb =  2 ) :   (a )  c 0 ( t  )  =  - c 2  ( t  )  and (b) c 1( t  )  =  - c 3 ( t  ).

0

1

0

1
c 2(t  )

c 1(t  )

c 3(t  )

c 0(t  )

Fig. 9.  The two-state trellis diagram for trellis-
coded OQPSK with a raised-cosine pulse-
shaping modulator.
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Finally, the equivalence (in terms of the transmitted waveform) between the embodiment of the
XTCQM modulator and the SQORC-P modulator discussed previously can be readily established. Con-
sider the example of Fig. 2, where a sequence {an} = {+1,+1,−1,+1,−1,−1,+1,+1} (or equivalently
{a′n} = {0, 0, 1, 0, 1, 1, 0, 0}) is transmitted in the I arm. From the trellis diagram of Fig. 9, the corre-
sponding transmitted waveform sequence is {c0 (t) , c3 (t) , c1 (t) , c3 (t) , c2 (t) , c1 (t) , c0 (t) , c0 (t)},5 which
indeed is identical to the composite waveform in Fig. 2(b).

VI. The Optimum Reception and Bit-Error Probability Performance of Trellis-
Coded OQPSK With Partially Overlapped Raised-Cosine Pulse Shaping

The optimum receiver for the waveform generated by the transmitter of Fig. 7 over a linear AWGN
channel is discussed in the citation in Footnote 3 and illustrated here in Fig. 10. The input data waveforms
are demodulated and then correlated with the two primary waveforms, c0 (t) and c1 (t), which then are
passed through integrate-and-dump (I&D) filters (which, combined with the correlators, form matched
filters). The structure of this receiver is the same for either fully or partially overlapped raised-cosine
pulse shaping, the difference being the assignment of c1 (t) to the correlators in accordance with Eq. (15)
or Eq. (16), respectively. Four decision variables, Z0, Z1, Z2, and Z3, are formed, where Z2 = −Z0 and
Z3 = −Z1 [since c2 (t) = −c0 (t) and c3 (t) = −c1 (t)]. Due to the unequal energies of c0 (t) and c1 (t),
namely, E0 = A2 and E1 = A2 (1− α/2), biases of E0/2 and E1/2 must be subtracted from the I&D
outputs prior to forming the Zi’s. The decision variables then are fed to a Viterbi algorithm (VA) for
final detection.

INPUT / WAVEFORM /
BRANCH METRIC

VITERBI ALGORITHM

0 / c 0(t  ) / Z 00 0

1 1

1 / c 3(t  ) / Z 3

0 / c 1(t  ) / Z 1

1 / c 2(t  ) / Z 2
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DEMODULATED

Z 0

Z 2

Z 3

Z 1

-E 0 
/2

-E 1 
/2

(-1)
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Ts /2

( )dt

-Ts /2

Ts /2

( )dt

c 1(t  )

OQPSK
SIGNAL

90
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cos wc t

TRELLIS-
CODED

INPUT / WAVEFORM /
BRANCH METRIC

VITERBI ALGORITHM

0 / c 0(t  ) / Z 00 0

1 1

1 / c 3(t  ) / Z 3

0 / c 1(t  ) / Z 1

1 / c 2(t  ) / Z 2

BITS

DEMODULATED

Z 0

Z 2

Z 3

Z 1

-E 0 
/2

-E 1 
/2

(-1)

c 0(t  )

0

Ts
( )dt

c 1(t  )

0

Ts
( )dt

Fig. 10.  The optimum receiver structure.

5 The first selected waveform, i.e., that corresponding to the interval 0 ≤ t ≤ 2Tb, is discarded here since it depends on the
initially random state of the shift register. For correspondence with Fig. 2(b), the initial state of the register would have
been “1.”
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The procedure for computing the upper and lower bounds on the average BEP, Pb (E), of the receiver
in Fig. 10 is based on the transfer function bound approach outlined in [7]. (Derivations and examples
appropriate to the case under consideration here are given on pp. 374–386 of [7] for trellis-coded QPSK.)
In particular, the upper bound for the BEP over an AWGN channel is given by [7]

Pb ≤
1
m
Q

√d2
freeĒb
2N0

 exp
(
d2

freeĒb
4N0

)
∂T (D, I)

∂I

∣∣∣D=exp(−Ēb/4N0),I=1 (18)

where d2
free is the square of the minimum free distance of the code, i.e., the minimum Euclidean distance

between a pair of valid, distinct sequences of waveforms, Ēb is the average energy per bit, N0 is the
single-sided PSD of the AWGN, and T (D, I) is the transfer function associated with the state diagram
derived from the trellis diagram. Since, for the case under consideration here, the squared minimum free
distance is d2

free = 4 (independent of α), it is straightforward to show that

Q

√2Ēb
N0

 ≤ Pb (E) ≤ Q

√2Ēb
N0

 4[
2− exp

(
− (1− [α/2])

(1− [α/4])
Ēb
N0

)
− exp

(
− 1

(1− [α/4])
Ēb
N0

)]2 (19)

where the lower bound is obtained from the single minimum distance path that diverges and remerges
with the “0” state after two transitions, which corresponds to a single bit error.

For fully overlapped raised-cosine pulse shaping (α = 1), the upper and lower bounds of (19) become

Q

√2Ēb
N0

 ≤ Pb (E) ≤ Q

√2Ēb
N0

 4[
2− exp

(
− 2Ēb

3N0

)
− exp

(
− 4Ēb

3N0

)]2 (20)

whereas for rectangular pulse shaping (α = 0), the upper and lower bounds of (19) become

Q

√2Ēb
N0

 ≤ Pb (E) ≤ Q

√2Ēb
N0

 1[
1− exp

(
− Ēb
N0

)]2 (21)

Asymptotically (Ēb/N0 large), the upper and lower bounds of (19) converge toward equality, which
indicates that, for any 0 ≤ α ≤ 1, the BEP approaches that of uncoded QPSK (or OQPSK), namely,
Pb (E) = Q

(√
2Ēb/N0

)
. For the fully overlapped case, plots of Pb (E) obtained from simulation of the

receiver in Fig. 10 and the bounds of (20) are illustrated in Fig. 11. It is observed that over a wide range
of Ēb/N0, the lower bound is an excellent approximation of the true performance obtained via computer
simulation. Since the lower bound is independent of α, and since the upper bound of (21) (corresponding
to α = 0) is even tighter than the bounds of (20) (corresponding to α = 1), one would anticipate the same
degree of tightness for the fit of the lower bound to simulated results here for any partially overlapped
case.
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Fig. 11.  The simulated BEP and the bounds on the BEP
for trellis-coded OQPSK with fully overlapped (a =  1 )
raised-cosine pulse shaping.

VII. Conclusion

In conclusion, trellis-coded OQPSK with partially overlapped raised-cosine pulse shaping offers the
system designer the flexibility of a continuously variable trade-off (as α varies between 0 and 1) between
the rate of spectral roll-off and the amount of envelope fluctuation of the transmitted signal with a
receiver BEP performance that is virtually independent of the value of α and nominally equivalent to
that of uncoded QPSK. Furthermore, it should be noted that, if one desires to surround the above trellis-
coded modulation scheme with an additional error-correction encoder/decoder, then a soft output Viterbi
algorithm (SOVA) [8] would replace the traditional hard decision VA output in Fig. 10.
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